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It is shown that, in addition to usual neoclassical tearing modes, another type of nonclassical tearing
mode exists in tokamaks: viz., current-interchange tearing modes !CITMs". CITMs are directly
driven by unstable pressure-driven electromagnetic or electrostatic modes of the interchange type
!e.g., interchange/ballooning modes, drift waves, etc." due to the current gradient in tokamaks.
Interchange-type modes exchange not only thermal and magnetic energies between flux tubes but
also current. In a plasma with a current !or resistivity" gradient, such an interchange can create a
current sheet at a mode resonance surface and result in the excitation of CITMs. Note that the
interchange mode !i.e., Rayleigh–Taylor instability" is fundamental to tokamak physics. This new
theory has an effect on both resistive magnetohydrodynamic stability and transport theories.
Instabilities of the interchange type could be directly converted into CITMs, alternative to forming
turbulent eddies through nonlinear coupling as in conventional transport theories. In particular, our
CITM theory fills in the component in the transport theory of Rechester and Rosenbluth #Phys. Rev.
Lett. 40, 38 !1978"$ for the origin of magnetic island structure in axisymmetric tokamaks. © 2010
American Institute of Physics. #doi:10.1063/1.3425857$

I. INTRODUCTION

Neoclassical tearing modes !NTMs"1,2 are important for
high-beta confinement of tokamak plasmas, where classical
tearing modes are usually stable. In this paper we show that,
there exists another type of nonclassical tearing mode in to-
kamaks. We refer our newly discovered non classical tearing
mode as current-interchange tearing modes !CITMs", since
they are directly driven by unstable electromagnetic and
electrostatic modes of the interchange type !e.g., inter-
change/ballooning modes, drift waves, etc." Interchange-type
modes exchange not only thermal and magnetic energies be-
tween flux tubes but also current. In a plasma with resistivity
!or current" gradient, such an interchange can create a current
sheet at a mode resonance surface and result in the excitation
of CITMs.

Since representing a new type of nonclassical tearing
modes, CITMs can help to further clarify the NTM
experiments.3 In particular, our theory may explain why
sometimes the resistive wall modes and NTMs are tied to-
gether in the experimental observation. The current CITM
picture can also provide a natural explanation of the conver-
sion from kink modes, for example, the n=1 internal kink
modes, to tearing modes, where n is the toroidal mode num-
ber. This may help to explain the tokamak plasma internal
disruptions.4,5

CITMs are interesting not only because they represent a
new type of nonclassical tearing mode but also because they
may affect the development of the interchange type of
modes, which are fundamental to tokamak physics. Instabili-
ties of the interchange type have been widely used to model
anomalous transport in tokamaks in terms of the formation of
turbulent eddies through nonlinear coupling. Our new theory
allows another route for the development. Interchange-type

instabilities could be directly converted into CITMs, instead
of developing into the pure interchange nonlinear state. The
current theory is particularly relevant for clarifying the
source of electron transport in tokamaks. In particular, our
CITM theory fills in the component in the Rechester and
Rosenbluth transport theory6 for the origin of magnetic is-
land structure in axisymmetric tokamaks. The electron en-
ergy transport observed experimentally is much larger than
what one would expect from diffusive process due to
Coulomb collisions. In Ref. 6, the broken magnetic surfaces
due to formation of the magnetic island and stochastic field
lines are used to explain the enhanced electron transport.
However, how magnetic islands are formed in axisymmetric
tokamak plasmas has not been given. The microtearing in-
stabilities driven by electron temperature gradient are also
proposed in this field for explaining the formation of the
magnetic islands.7 However, this type of modes are usually
stable in conventional tokamaks except near the plasma
edge.7 Our current theory shows that the modes of inter-
change type can convert to tearing modes and result in the
magnetic island structure. The mode types which can cause
broken magnetic surfaces are broad based on our current
theory. Secondary excitation of tearing modes by nonlinear
pressure-driven mode turbulence had been reported in
NIMROD code calculations,8 in which the anomalous resistiv-
ity excited by the nonlinear pressure-driven modes was taken
into consideration. In this paper we show, however, that the
excitation of tearing modes by interchange-type modes can
occur even in the linear stage, when the effect of the resis-
tivity gradient is taken into account.

The effect of the resistivity gradient was first considered
in the early 1960s, but only in relation to the rippling mode.9

The resistivity gradient effect was addressed recently in
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relation to tearing mode saturation,10 but not for the CITMs
that are reported for the first time in this paper.

This paper is arranged as follows. In Sec. II, the exis-
tence of CITMs is proved; in Sec. III, the physics implication
of CITMs on anomalous transport and magnetohydrody-
namic !MHD" phenomena is discussed; and in Sec. IV, sum-
mary is presented.

II. EXISTENCE OF CURRENT INTERCHANGE
TEARING MODES

In this section, the existence of CITMs is demonstrated
from three aspects: the intuitive physics analysis, the linear
analysis, and the nonlinear analysis. These analyses show
that CITMs are crucial for tokamak physics, in that CITMs
represent another developing route for pressure drive modes:
converting to tearing type of modes. Therefore, they are es-
sential for considering tokamak anomalous transport.

A. Physics analysis

We first briefly explain the physical basis for the conver-
sion of pressure-driven modes to CITMs, i.e., for the exis-
tence of CITMs. Figure 1 gives a schematic picture for this
mode conversion process. We consider a rational surface
!dot-dashed line". The minor radius points up, and therefore
the gradient of the plasma electric conductivity #! points
down. Both the magnetic field and the Ohmic current at the
rational surface are directed out of the plane of Fig. 1. The
equilibrium magnetic field in the orthogonal direction with
respect to the magnetic field on the rational surface, B!, is
denoted by horizontal arrows. Boldface is used to denote
vectors. B! switches its direction across the rational surface.
If the system is unstable to pressure-driven modes, a radial
plasma displacement "r of the interchange type !solid curve"
develops. In the conventional physical picture for the
Rayleigh–Taylor instability, these perturbations develop
when the total thermal and magnetic energy is reduced. Be-
cause the electric conductivity in tokamaks is generally in-
homogeneous, the equilibrium current profile is not flat in
the radial direction. Consequently, interchange-type pertur-
bations carry not only plasma and magnetic energies but also
current, by carrying along plasma temperature. This creates

alternating hills and holes of plasma current at the rational
surface. Where plasma balloons out from the core, a current
hill is created !denoted in Fig. 1 by circled dots". Instead,
Where plasma shrinks to the core, a current hole is created,
which is equivalent to a perturbed current being formed that
is opposite to the equilibrium current at the rational surface.
In Fig. 1, a current hole is denoted by a circled X. A current
hill induces a counterclockwise magnetic field, whereas a
current hole gives rise to a clockwise magnetic field. When
these perturbed magnetic fields are added to the equilibrium
magnetic field B!, the result is a magnetic island chain,
denoted by the dashed curves in Fig. 1. This explains the
mode conversion process from pressure-driven to current-
driven tearing modes in tokamak plasmas.

B. Linear analysis

In this subsection, we demonstrate the existence of
CITMs in the linear theory framework. We consider high n
or radially localized modes, where n is the toroidal mode
number. The time !t" dependence is assumed to be exp%#t&,
where # is the growth rate. The basic set of equations is
derived from the equation of motion !or the so called vortic-
ity equation", Ohm’s law, and Maxwell’s equations

B · #
B · $J

B2 + 2
B% !

B2 · #$p + # · ' B
B2 % &m#

2"( = 0,

!1"

$J = !!$E + #"% B" + $!E , !2"

$p = − " · #p , !3"

$! = − " · #! , !4"

$J = #% $B , !5"

#$B = − #% $E , !6"

where B and E denote, respectively, the magnetic and elec-
tric fields, J is the current density, p represents the plasma
pressure, &m denotes the mass density, " is the fluid displace-
ment, !=b ·#b is the magnetic field line curvature, b=B /B,
! is the electric conductivity, bold face is used to denote the
vectors, and perturbed quantities are tagged with $. Here we
have considered incompressible plasmas. Noting that the
conductivity is a function of temperature and density, we
have also introduced the convective perturbation for it in Eq.
!4", as that for the plasma pressure in Eq. !3".9

We follow the standard approach to reduce the basic set
of Eqs. !1"–!6".11 The Hamada coordinates !v ,' ,(" are used,
v is the volume, ' is the generalized poloid angle, and (
represents the generalized toroidal angle. We also introduce
the ballooning mode representation for perturbed
quantities12,13

∇σ

B∗

ξr

FIG. 1. The schematic picture for the formation of magnetic island at the
rational surface due to the pressure-driven modes.
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$)m*k!nq" = $)!nq+ k", for k = 1,2, ¯ ,
!7"

$)!x" = )
−,

,

d'$)!'"exp%− inqsx'& ,

where m is poloidal mode number, x= !v−vs" /2vs,
s=2vs!dq /dv" /q is the magnetic shear, and vs represents
the reference surface. With the stream functions introduced
!""-b%$) and $B"-b%#$.", the following two coupled
equations can be obtained from Eqs. !1"–!6":

$

$'
' /̇3

B2C2$.( + 2ṗ!0v + 0(q̇'"$) − &#2 /̇
2

B2C2$) = 0,

!8"

#1 + !n21/#"C2$$. = /̇
d$)

d'
+ i
2!
#
$) , !9"

where C2= !#(− q̇'#v"2, 2!= !1 / /̇"nqE3!d ln ! /dv", E3 is
toroidal equilibrium electric field, 0v and 0( are covariant
components of the curvature !, and dot denotes derivative
with respect to v. Equations !8" and !9" can be combined to
give the following equation:

$

$'
* 1

B2

C2

1 + !n21/#"C2' $

$'
$) + i

2!
#
$)(+

+
2ṗ

/̇4 !0v + q̇'0("$) − &#2 1

/̇2B2C2$) = 0. !10"

1. Conversion from resistive interchange modes to
CITMs in the cylinder limit

To get an elucidating picture for the conversion from
resistive interchange modes to CITMs, we first investigate
the resistivity gradient effect on resistive interchange modes
in the cylinder limit.11,14 In this case, it is assumed that
!1 /#"C241. With cylindrical symmetry, the geodesic curva-
ture 0(=0 vanishes and the equilibrium quantities become
independent of '. Therefore, Eq. !10" reduces to

$2$)

$'2 + i
2̄!
#

$$)

$'
+ !ns,#15 − #1n2s2'2"$) = 0, !11"

where 5=2nṗ0v-1 / q̇-#v-/̇3-!1 /&#3"1/2 and 2̄!=2!-/̇ /
nq̇-#v--!1 /&#3"1/2. The second term in this equation is due to
the resistivity gradient effect.

Equation !11" can be reduced to Kummer’s equation15

z
d2$u

dz2 + '3
2

− z(d$u

dz
− '3

4
2̄!2/#2 + 4ns,#15

16ns,#1 ($u = 0,

!12"

by the following two consecutive transforms:

$) = '−1/2e−i!1/2"!2̄!/#"'$F ,

$F = z3/4e−!1/2"z$u!z" .

Here, z=ns,#N1'. Kummer’s equation, Eq. !12", can be
solved analytically. The eigenfunction is

$) = !n2s2#1"1/82−ke−i!2̄!/2#"'−!1/2"ns,#1'2
Hk#!n2s2#1"1/4'$ ,

!13"

with the eigenvalue determined by the following dispersion
relation:

2̄!2/#2 + 4ns,#15
4ns,#1 = 2k + 1. !14"

Here, k=0,1 ,2 ,¯ and Hk is the Hermite polynomial.
Without the resistivity gradient effect !i.e., 2̄!=0", the

dispersion relation in Eq. !14" reduces to the resistive inter-
change stability condition in Refs. 11 and 14: ṗ0v60, which
is more stringent than the Suydam criterion.16 The dispersion
relation in Eq. !14" shows the resistivity gradient on the
growth rate. For tokamaks, the loop voltage is a few volts
and the equilibrium magnetic field is several tesla. Hence,
the dimensionless parameter 2̄! is of order of 10−5–10−4 as
compared to the Alfvén frequency 7A. Using this estimate,
one can see that, for # /7A.10−3, the 2̄! effect on growth
rate is not dramatical. However, the 2̄! effect on the conver-
sion from resistive interchange modes to CITMs is signifi-
cant. This can be seen from the eigenfunction in Eq. !13".
Without the resistivity gradient effect, the eigenfunction is
symmetric with respect to '. Using Eq. !9", one can see that
the perturbed radial magnetic field . is odd in this case.
Therefore, the perturbed radial magnetic field vanishes at the
rational surface and no field line reconnection can occur. In
the presence of the resistivity gradient effect !i.e., 2̄!%0",
the eigenfunction $) becomes complex and nonsymmetric
and consequently an even !i.e., tearing mode parity" compo-
nent of the perturbed radial magnetic field appears. This is
due to the factor exp%−i2̄!' / !2#"& in the eigenfunction in Eq.
!13". Because the resistive modes are localized in the con-
figuration space, they extend broadly along the ballooning
mode space. The coordinate ' can be a few tens to hundred.
This makes this factor to be finite. This factor breaks the
resistive interchange mode symmetry and gives rise to the
tearing parity modes. As well-known, a nonvanishing radial
magnetic field at the rational surface can cause the field line
reconnection. This shows the conversion from resistive inter-
change modes to CITMs. This also shows that CITMs are
different from the so-called rippling modes,9 which also re-
sults from resistivity gradient.

2. Conversion from ballooning modes to CITMs

It is also interesting to see how the pressure driven
modes are converted to CITMs in the toroidal geometry. We
use the ballooning representation to account for the toroidal
coupling. We consider the s−8 equilibrium model.13 In
this equilibrium, the ballooning mode equation in Eq. !10"
becomes
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$

$'* C̄2

1 + !1!/#N"C̄2
' $

$'
9 + i

2!!

#N
$)(+

+ 8%cos ' + f!'"sin '&$) − #N
2 C̄2$) = 0, !15"

where 1!=n21 / !R27A", 2!!= 2̄! /7A, C̄2=1+ f2!'", and
f!'"=s'−8 sin '.

We solve Eq. !15" numerically using Adaptive EiGen-
function Independent Solution-1 Dimension !AEGIS-
1D"code. AEGIS-1D code is a linear adaptive shooting code
in the ballooning representation space, supplementary to the
two dimensional !2D" AEGIS code17 for high-n ballooning

calculation. The same numerical scheme as the 2D AEGIS is
used in AEGIS-1D code. The general solution is decomposed
by the independent solutions, the adaptive numerical shoot-
ing method is used to obtain the independent solutions, and
multiple region matching technique is employed to find the
eigenvalue and eigenfunction. This numerical scheme is par-
ticularly helpful for the computation of resistive modes,
since they extend broadly along the field line. For s−8 equi-
librium, the code recovers the conventional s−8 stability
boundaries.13,18 For s=0.5 case, it is found that the marginal
stability 8=0.386. The eigenfunction $) for 8=0.389 is
given in Fig. 2 with growth rate #N=5.39%10−3. The per-

δϕ

θ

FIG. 2. Ideal MHD ballooning mode eigenfunction.

δψ

θ

FIG. 3. The perturbed radial magnetic field for ideal MHD ballooning
mode.

δϕ

θ

FIG. 4. Resistive MHD ballooning mode eigenfunction.

δψ

θ

FIG. 5. The perturbed radial magnetic field for resistive MHD ballooning
mode.
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turbed radial magnetic field $. is also calculated and plotted
in Fig. 3. From Fig. 3, one can see that $. is odd. This is
therefore a pure interchange-type of modes.

When small resistivity 1!=10−6 is taken into account,
while keeping 2!!=0, the unstable mode can be found in
the stability regime for ideal MHD ballooning modes.
For example, for the case with s=0.5 and 8=0.38, an
unstable resistive ballooning modes with growth rate
#N=4.28%10−3 can be obtained. The eigenfunction $) is
given in Fig. 4 and the perturbed radial magnetic field $. is
plotted in Fig. 5. To see the mode behavior in the configura-
tion space, we transform back the eigenfunction $) and the

perturbed radial magnetic field $. onto the configuration
space, using Eq. !7". The results are plotted in Figs. 6 and 7.
As one can expect, the resistive modes extend more broadly
along the ' coordinate in the ballooning mode representation
space, or more localized in the configuration space. In the
current s−8 coordinate, the so-called :! !the relative jump
of the gradient of the perturbed radial magnetic field" is zero.
Therefore, there are no tearing modes excited. This is clearly
seen from the symmetry of the eigenfunction. This symmetry
of resistive modes in s−8 equilibrium can be seen from ex-
amining the ballooning mode equation in Eq. !15".

When the resistivity gradient is taken into account
!2!!%0", the symmetry of the ballooning equation, Eq. !15",
is broken. We also consider the case with s=0.5, 8=0.38 and
1!=10−6 as in the purely resistive ballooning mode case in
Figs. 4–7. The ordering of 2!! can be obtained from that of

δϕ

x̂

FIG. 6. Resistive MHD ballooning mode eigenfunction in configuration
space.

δψ

x̂

FIG. 7. The perturbed radial magnetic field for resistive MHD ballooning
mode in configuration space.

(a)

!
e{
δϕ

}

θ

(b)

"
m
{δ
ϕ
}

θ

FIG. 8. Real and imaginary parts of the CITM eigenfunction.
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2̄! in Sec. II B 1. We use a conserve estimate 2!!=10−5. The
real and imaginary parts of the eigenfunction $) are given in
Fig. 8, while the real and imaginary parts of the perturbed
radial magnetic field $. are plotted in Fig. 9. Figures 10 and
11 give, respectively, $) and $. plots in the configuration
space. The growth rate for this case is #N=4.2%10−3. From
Figs. 8–11, one can see that both $) and $. become com-
plex and nonsymmetric for $) and nonantisymmetric for $..
The tearing-parity of the modes appears as one can expect.
The perturbed radial magnetic field $. becomes finite at the
singular layer. For real part Re%$.&x̂=0=2.2%10−3, the
imaginary part Im%$.&x̂=0=2.4%10−3. When 2!! or 8 in-
creases, the strength of perturbed radial magnetic field at the
rational surface becomes even bigger. Noting that :!=0 in
this s−8 equilibrium model, the classical tearing modes are

nonexistant in this case. A finite perturbed radial magnetic
field $. at the rational surface represents a conversion from
restive ballooning modes given in Figs. 4–7 to CITMs in
Figs. 8–11.

C. Nonlinear analysis

Next, we analyze this mode conversion process nonlin-
early. We employ the conventional approach based on the
Rutherford equation19 to show how a current sheet results as
pressure-driven instabilities develop. For simplicity we use
cylindrical geometry !r ,' ,3", where r is the minor radius of
the tokamak and 3 is the toroidal angle. As usual, the singu-
lar layer at the rational surface and the outer regions are
analyzed separately. In the outer regions, the resistive effect

(a)
!
e{
δψ

}

θ

(b)

"
m
{δ
ψ
}

θ

FIG. 9. Real and imaginary parts of the perturbed radial magnetic field for
CITM.

(a)

!
e{
δϕ

}

x̂

(b)

"
m
{δ
ϕ
}

x̂

FIG. 10. Real and imaginary parts of the CITM eigenfunction in configu-
ration space.
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is usually negligible and ideal MHD theory applies. There-
fore, we focus our investigations on the singular layer.

The equations for the tearing mode and for the pressure-
driven mode govern the singular layer.20 With the resistivity
gradient effect taken into account and the perturbation of
resistivity assumed to result only from convection as in Ref.
9, these equations can be written as

$2$Br

$x2 = ;r
$$Br

$t
+ i

n;rBs

R
x
$"r

$t
+ i

m;rJ3
!rs

2

d ln !
dx

"r, !16"

i
R

nB3
sx

d2$Br

dx2 +
#2

n2<A
2

d2"r

dx2 − '1
4

− D("r = 0, !17"

where $Br is the perturbed radial magnetic field, ;r=!rs
2 is

the resistive time, rs is the minor radius at the rational sur-

face, R is the major radius, and D is the so-called Mercier
index. Equations !16" and !17" correspond to Eqs. !9" and !8"
in the ballooning mode representation space.

Equations !16" and !17" constitute a complete set of
equations describing the behavior of the singular layer. These
equations have two types of solutions: tearing-type modes,
which have even parity for $Br at the rational surface, and
pressure-driven modes, which have odd parity.20 Here we
consider the even parity !i.e., tearing" modes. The last two
terms in Eq. !16" represent the coupling of pressure-driven
modes. As shown in Ref. 19, the second term on the right-
hand side of Eq. !16" can be removed by a suitable surface
average. Then, following the procedure used to derive the
classical Rutherford equation in Ref. 19, one can extend the
linear tearing mode Eq. !16" into the nonlinear version:

;r
$w

$t
=

,Rrs

,2A
:! + 2̂!,Rrs

"r!rs"
w

, !18"

where w=4,!Rrs /ns"!$Br /B" is the width of the magnetic

island, :!= !d$Br /dx" /$Br -rs
−

rs
+

, 2̂!= !8qJ3 /B3s3/2!"-d ln ! /
dr-;r describes the coupling of pressure-driven modes, and
A/0.7 as given in Ref. 19. We estimate the magnitude of
2̂!. Similar to the estimate of 2!! for ballooning mode in
Sec. II B 2, the dimensionless parameter 2̂! /;r is of order of
a hertz. In driving Eq. !18", we have not included NTM
effects, such as the bootstrap current,1,2 the polarization
current,21 and the transport-induced current.22 In our theory,
the current sheet is related to the equilibrium Ohmic current
and is due to the convection of equilibrium current by un-
stable pressure-driven modes. Therefore, the second term on
the right-hand side of Eq. !18" represents an additional driv-
ing mechanism for tearing modes. Note that in the derivation
of the modified Rutherford Eq. !18", the “O” point of the
magnetic island is located where the perturbed electric con-
ductivity is minimum, which is consistent with the physics
analysis described in Sec. II A.

(a)
!
e{
δψ

}

x̂

(b)

"
m
{δ
ψ
}

x̂

FIG. 11. Real and imaginary parts of the perturbed radial magnetic field for
CITM in configuration space.
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eψ
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1

η’=0
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FIG. 12. !Color online" Linear eigenfunctions for the cases with !solid" and
without !dashed" resistivity gradient effect.
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From Eq. !18" one can derive a new stability criterion
for tearing modes

:! + 2̂!,2A
"r!rs"

w
6 0. !19"

This new criterion differs from the classical tearing mode
stability criterion :!60 by having an additional driving
term. We note that "r!rs" in Eq. !19" needs to be determined
by the vorticity equation. The key point is that "r contains
generally even parity part and therefore is finite at the ratio-
nal surface !see, for instance, Ref. 17 or Fig. 12". This can
also be explained by the simplified ideal MHD, zero beta
singular layer equation: d /dx!x2+#2"d"r /dx=0. The solution
of this equation is simply "r=c1arctg!x /#"+c0, where c1,0 are
constants. Here "!rs"=c2 represents the finite even parity
part. As the pressure-driven modes grow, the second term in
Eq. !19" can override the first term, so that CITMs are ex-
cited and magnetic islands formed. The second term in Eq.
!19" is inversely proportional to the island width. This indi-
cates that this term can play a role in the early developing
stage of pressure-driven modes. As in the theory for NTMs,
one can anticipate that the strict singularity in w can be re-
moved by taking into account finite Larmor radius effects.

We can discuss the order of nonlinear development.
Dropping the first term on the right, Eq. !18" gives

w2 /"r
,Rrs. 2̂! /#;r. As discussed earlier, we can order

2̂! /;r to a hertz. Using ion Larmor radius to estimate w, the
ratio w /,Rrs is about 10−3. Therefore, for #=103 Hz, one
has w /"r>1. This is especially true for marginally unstable
modes. Note further that w and "r have the same dimension
and plasma response to island width w is quick due to the
parallel mobility. Therefore, one can anticipate that the local
pressure profile flattening due to the formation of magnetic
islands can occur immediately after the marginal stability
and before the interchange-type modes saturated. Certainly,
there may exist another scenario, in which the plasma runs
very quickly over the marginal instability, so that the
interchange-type modes get saturated first.23

In above analysis, we have considered electromagnetic
perturbations. Actually, electrostatic modes can have the
same type of effect on tearing modes. For electrostatic
modes, the radial displacement "r in the second term of Eq.
!18" is related to the electrostatic perturbation $3 as follows:
"r-#r ·B%#$3 /#B2. Consequently, the electrostatic
quasineutrality condition can be used to replace the pressure-
driven mode Eq. !17". Hence, unstable electrostatic modes
!e.g., drift waves" can also convert to CITMs.

Now we exhibit a numerical example for this new mode
conversion. Since CITMs belong to nonclassical tearing
modes, we will consider the NTM-like scenario in which
classical tearing modes are stable. There are many types of
such scenarios in the finite beta confinement. Here, we use a
reduced MHD model in cylindrical geometry to simulate a
NTM-like scenario. This model has to do with confinement
at finite beta. Resistivity is small for finite beta. Classical
g-modes of the tearing mode type are highly localized when
the resistivity is small, and viscosity !or finite Larmor radius"
effects can suppress these localized modes. Hence, fairly

large interchange-type modes are prevalent, due to the finite
beta drive. The basic set of linear equations is as follows:

$$U
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= #.,J$1 −
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$z
+ 0r0

1
r
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$'
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$$.
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+ 1#"
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d ln 1/dr

d ln @/dr
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$$)
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2 $p ,

where −i<"=z%#$), $B=#$.%z, $U=#"
2 $), $J

=#"
2 $., #a ,b$1= #!$a /$r"!$$b /$'"− !$b /$r"!$$a /$'"$ /r, z

=R3, R /a=10, )=0. Also, we model the safety factor profile
as q!r"=qa / !2−r2"+@q!r−rs"exp%−!r−rs"2 /Lq

2&, with qa
=3.5, @q=−0.3, Lq=0.1, and rs=0.5; we take the profile for
the ratio between plasma energy and magnetic energy to be
@!r"= !@0−@1"!1−r2"+@1, with @0=0.01 and @1=0.001,
0r0=−B'

2 /r; and we assume 10−8 as the value for the resis-
tivity 1, viscosity ?, and thermal conductivity /. We examine
the case of the n=1, m=2 interchange-type mode as an ex-
ample. For such small resistivity, the tearing-type classical
g-mode is highly localized and therefore suppressed by vis-
cosity !or finite Larmor radius" effects.

In our numerical scheme, Fourier decomposition is used
in poloidal and toroidal directions, and finite difference
method is used in the radial direction. The LAPACK library
is used in calculating eigenvalues of the corresponding ma-
trix. The code is benchmarked against the asymptotic match-
ing method successfully at small resistivity regime !for the
case without resistivity gradient effect". The radial grid num-
ber is 200 with grid accumulation around the rational sur-
face. This is sufficient for this type of calculation.

Figure 2 shows the linear eigenmode as a function of
minor radius for cases with !solid curve" and without !dashed
curve" resistivity gradient effect. With no resistivity gradient
effect taken into account, the mode is a pure resistive inter-
change mode !with computed :!=−4.15", for which the ra-
dial magnetic perturbation . at the rational surface is negli-
gible. The linear growth rate normalized to the Alfvén
frequency is 3.2%10−5. When the resistivity gradient effect
is taken into account, however, the radial magnetic perturba-
tion . at the rational surface becomes finite. Consequently, a
mode of tearing parity appears, with growth rate 4.1%10−5.
This confirms the conversion of pressure-driven modes to
CITMs. Then, since a finite radial magnetic perturbation ex-
ists at the rational surface, a magnetic island is formed. Due
to the large parallel thermal conductivity, the pressure profile
is flattened at the rational surface over the width of the mag-
netic island. As discussed in the last paragraph, we can focus
on the nonlinearity of the island-induced pressure profile
flattening.

We adopt this simplified pressure profile evolution to
perform a quasilinear analysis of the CITMs, as is done for
NTMs. Figure 3 shows the quasilinear evolution of the radial
magnetic field !or equivalently, the island width w" and the
quasilinear growth rate. The numerical results in Fig. 13 in-
dicate that the width of the magnetic island increases in time.
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Since the pressure profile flattening width increases with the
island width, the quasilinear growth rate gradually decreases.
Eventually, the island width saturates.

III. DISCUSSION

In this section, we discuss the CITM effect on anoma-
lous transport and MHD phenomena. Note that the inter-
change mode is fundamental to the magnetically confined
plasmas. Note also that tokamak carries the toroidal current
and that there generally exists current gradient in tokamak
confinement. The mode conversion from interchange to tear-
ing types of modes in tokamaks, i.e., the existence of CITMs,
can affect on anomalous transport and MHD phenomena.

We first discuss anomalous transport in tokamaks. There
are two types of anomalous transport theories in this field:
the conventional one that is based on the turbulent eddies
through nonlinear coupling and the field line stochasticity
one that is based on destroyed magnetic surfaces.6,24,25 Both
theories explain the nonclassical radial transport step size. In
the conventional theory, the turbulent eddies characterize the
step size. In the theory based on the destroyed magnetic sur-
faces the step size is characterized by the magnetic island
width and nearby islands !or their stochastic field lines" re-
connection. The importance aspect of the theory based on the
destroyed magnetic surfaces is that it can naturally explain
the source of electron transport.6 Since electrons have large
parallel thermal velocity, their transport can be dramatically
enhanced by the broken magnetic surfaces. The question is
what causes the magnetic surfaces to brake in a axisymmet-
ric tokamak. The microtearing mode theories have been pro-
posed in this field, for example, that based on the electron
temperature gradient modes.7 In these theories, the field line
reconnection !or the formation of islands" results from the
turbulence-induced anomalous current sheet. In our current
CITM theory, we show that the current sheet can occur at the
first place, as soon as the existing current-gradient in toka-
mak is taken into account. Since interchange-type of modes
are universal, the formation of the magnetic islands in a to-

kamak which is unstable to interchange type of modes can be
general. This is just like what we have examined for
interchange/ballooning modes in Sec. II. Note that the con-
ventional transport theories rely on the nonlinear develop-
ment of the interchange type of modes. Our CITM theory
shows that the underlying instabilities for conventional trans-
port theories can converted to CITMs and cause the forma-
tion of the magnetic islands. This leads to the anomalous
transport described by the theories based on the destroyed
magnetic surfaces.6,25 Due to this critical change, we further
discuss some concerned issues for anomalous transport.

First, we discuss the transport barrier phenomenon. The
reduced particle transport at the reversed shear region has
been reported in the simulations based on the theories of
broken magnetic surfaces.24,25 The conversion from the
interchange-type of modes to CITMs gives a support to the
transport barrier theory based on the broken magnetic sur-
faces. An intuitive picture for transport barrier is given as
follows. As shown in Fig. 14, the island !including the asso-
ciated stochastic field" rotational transform reverses direction
across a q minimum. As islands grow and reconnect in the
case without magnetic shear reversal !islands A and B and
their associated stochastic field", magnetic energy can be re-
leased and the radial transport step size increased. However,
this type of island-island reconnection is prohibited at the
stationary surface of safety factor in the case of reversed
shear !islands A and A! and their associated stochastic field".
Enhanced transport due to island-island and their associated
stochastic field reconnection in the normal shear case has
been reported in the reversed field pinch experiments.26 The
reconnection forbidden layers are observed at the q maxi-
mum in the reversed field pinch experiments.27 These layers
are termed as the so-called ghost surfaces. Ghost surfaces
were originally introduced for the standard map to denote
surfaces which are nonintersecting !in this context, they are
called ghost circles".28,29 We point out here that at q station-
ary surface such type of ghost surfaces can be formed natu-
rally due to different wiring directions of island !and their
associated stochastic region" field lines on the opposite sides
of q stationary surface.
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The other important issue is the formation of blob
filamentary !or intermittent" structures, as observed ex-
perimentally.30–35 Magnetic islands and blob filaments have
similar spatial structure. Both are mainly aligned along the
magnetic filed lines, are characterized by local poloidal ho-
mogeneity around the filament axis, and have saturated size.
Experimental observations show that the blobs at the plasma
edge are brighter than the surrounding area, no matter on
which sides: toward core plasma or toward vacuum region.35

From Fig. 1, one can see that islands formed by the magnetic
islands bring cold and hot plasmas together. Therefore, one
can anticipate that charge-recombination process occurs at
the island regions. This makes blobs brighter. Actually, many
numerical simulations of blob phenomenon relies on resis-
tive MHD for formation of the magnetic islands.36 Our
theory indicates that CITMs can be a candidate for explana-
tion the formation of this type of islands.

The field line stochasticity-induced transport picture is
also consistent with the formation of H-mode confinement in
tokamak experiments.37 First, we note that the rotation cur-
vature can prevent island reconnection, in the same topologic
consideration as that proposed for suppressing turbulence
eddies.38 Second, we note that H-mode with negative charge
at the plasma edge usually has better particle confinement
property than that with positive edge charge.23 Note that the
stochasticity-induced transport is characterized by the paral-
lel motion of the particles. Since electrons have large parallel
velocities, they can then play a key role in transport. There-
fore, one can expect that negative charges at the plasma edge
can help to reduce the core electron transport. Our theory can
give a possible candidate for island formation for
stochasticity-induced transport given in Ref. 6.

Furthermore, as shown in Sec. II, the conversion to
CITMs occurs immediately after the marginal stability
limit. This may explain why many linear marginal stability
criteria––for example, those for peeling-ballooning
modes39,40—remain relevant for explaining the experimental
observations.

Besides anomalous transport, CITMs can also help to
explain MHD phenomena observed in tokamak experiments.
For example, the current CITM picture can provide a natural
explanation of the conversion from n=1 internal kink modes
to tearing modes for explaining the tokamak plasma internal
disruptions.4,5 Note that CITMs is a new type of nonclassical
tearing modes and experimentally observed NTMs usually
occur at high beta confinement.3 At high beta, interchange-
type of modes are likely to develop. Our theory may explain
why sometimes the resistive wall modes and NTMs are tied
together in the experimental observations.

IV. SUMMARY

In summary, we have shown that another type of non-
classical tearing mode exists in tokamaks: viz., called
CITMs. We explained the physics underlying these modes
and demonstrated their existence both analytically with the
modified Rutherford equation and also numerically with a
reduced MHD code. Our results indicate that systems that are
unstable to pressure-driven modes of interchange type are

prone to become unstable also to current-driven tearing
modes. We have explained how the excitation of the new
CITMs allows another path for the development of anoma-
lous transport in tokamaks. These new modes could provide
natural explanations for many anomalous transport features,
such as the nonclassical transport step size, especially for
electron transport, the observation of filamentary !or inter-
mittent" structures, the formation of internal transport barri-
ers, the H-mode confinement, etc. The CITMs may also help
to understand certain MHD phenomena, such as the coexist-
ence of kink and tearing modes and the internal disruption.

In this paper, we have discussed many experimental phe-
nomena. They are complex in nature. One can expect that
further theoretical and experimental efforts are required to
fully clarify them. Nevertheless, with so many coincidences
between our current theory and experimental observations
we believe that the conversion from interchange-type of
modes to tearing modes is an important physics phenomenon
in tokamaks. It deserves to be further investigated in the
future.

ACKNOWLEDGMENTS

We are grateful to Dr. J. W. Van Dam for stimulating
discussions.

This research is supported by U.S. Department of
Energy !Grant No. DE-FG02-04ER54742" and KAKENHI
!Grant No. 19760595".

1R. Carrera, R. D. Hazeltine, and M. Koschenreuther, Phys. Fluids 29, 899
!1986".

2J. D. Callen, W. X. Qu, K. D. Siebert, B. A. Carreras, K. C. Shang, and D.
A. Spong, Plasma Physics and Controlled Nuclear Fusion Research
!International Atomic Energy Agency, Vienna, 1987", Vol. 2, p. 157.

3R. J. La Haye, Phys. Plasmas 13, 055501 !2006".
4J. Wesson, Tokamaks !Cambridge University Press, Oxford, 2004".
5B. B. Kadomtsev, Sov. J. Plasma Phys. 1, 389 !1975".
6A. B. Rechester and M. N. Rosenbluth, Phys. Rev. Lett. 40, 38 !1978".
7J. W. Connor, S. C. Cowley, and R. J. Hastie, Plasma Phys. Controlled
Fusion 32, 799 !1990".

8P. Zhu, C. R. Sovinec, and C. C. Hegna, Bull. Am. Phys. Soc. 51, 38
!2006".

9H. P. Furth, J. Killeen, and M. N. Rosenbluth, Phys. Fluids 6, 4826
!1963".

10R. J. Hastie, F. Militello, and F. Porcelli, Phys. Rev. Lett. 95, 065001
!2005".

11D. Correa-Restrepo, Z. Naturforsch. C 37a, 848 !1982".
12J. W. Van Dam and Y. C. Lee, Proc. of the Advanced Bumpy Torus Con-

cept Workshop !Oak Ridge, Tennessee, 1980", p. 471.
13J. W. Connor, R. J. Hastie, and J. B. Taylor, Phys. Rev. Lett. 40, 396

!1978".
14J. L. Johnson and J. M. Greene, Plasma Phys. 9, 611 !1967".
15M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions

!Dover, New York, 1972", p. 503.
16B. R. Suydam, Proceedings of the Second UN international Conference

PUAE, United Nations, Geneva, 1958, Vol. 31, p. 157.
17L.-J. Zheng and M. Kotschenreuther, J. Comput. Phys. 211, 748 !2006".
18J. Nührenberg and R. Zille, Phys. Lett. A 129, 113 !1988".
19P. H. Rutherford, Phys. Fluids 16, 1903 !1973".
20A. H. Glasser, J. M. Greene, and J. L. Johnson, Phys. Fluids 18, 875

!1975".
21F. L. Waelbroeck, J. W. Connor, and H. R. Wilson, Phys. Rev. Lett. 87,

215003 !2001".
22R. Fitzpatrick, Phys. Plasmas 2, 825 !1995".
23R. R. Weynants, G. van Oost, G. Bertschinger, J. Boedo, P. Brys, T.

Delvigne, K. H. Dippel, F. Durodie, H. Euringer, K. H. Finken, D. S.

052508-10 L. J. Zheng and M. Furukawa Phys. Plasmas 17, 052508 !2010"

Downloaded 12 Jul 2012 to 128.83.61.166. Redistribution subject to AIP license or copyright; see http://pop.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1063/1.871434
http://dx.doi.org/10.1063/1.865682
http://dx.doi.org/10.1063/1.2180747
http://dx.doi.org/10.1103/PhysRevLett.40.38
http://dx.doi.org/10.1088/0741-3335/32/10/004
http://dx.doi.org/10.1088/0741-3335/32/10/004
http://dx.doi.org/10.1103/PhysRevLett.95.065001
http://dx.doi.org/10.1103/PhysRevLett.40.396
http://dx.doi.org/10.1088/0032-1028/9/5/311
http://dx.doi.org/10.1016/j.jcp.2005.06.009
http://dx.doi.org/10.1016/0375-9601(88)90080-1
http://dx.doi.org/10.1063/1.1694232
http://dx.doi.org/10.1063/1.861224
http://dx.doi.org/10.1103/PhysRevLett.87.215003


Gray, J. D. Hey, D. L. Hillis, J. T. Hogan, L. Konen, R. Leners, A. M.
Messiaen, A. Pospieszczyck, U. Samm, R. P. Schorn, B. Schweer, G.
Telesca, R. van Nieuwenhove, and P. E. Vandenplas, Nucl. Fusion 32, 837
!1992".

24D. del-Castillo-Negrete and P. J. Morrison, Phys. Fluids A5, 948 !1993".
25P. J. Morrison and A. Wurm, Scholarpedia J. 4, 3551 !2009".
26J. S. Sarff, Bull. Am. Phys. Soc. 54, 178 !2009".
27M. E. Puiatti, A. Alfier, F. Auriemma, S. Cappello, L. Carraro, R.

Cavazzana, S. Dal Bello, A. Fassina, D. F. Escande, P. Franz, M. Gobbin,
P. Innocente, R. Lorenzini, L. Marrelli, P. Martin, P. Piovesan, I. Predebon,
F. Sattin, G. Spizzo, D. Terranova, M. Valisa, B. Zaniol, L. Zanotto, M.
Zuin, M. Agostini, V. Antoni, L. Apolloni, M. Baruzzo, T. Bolzonella, D.
Bonfiglio, F. Bonomo, A. Boozer, M. Brombin, A. Canton, R. Delogu, G.
De Masi, E. Gaio, E. Gazza, L. Giudicotti, L. Grando, S. C. Guo, G.
Manduchi, G. Marchiori, E. Martines, S. Martini, S. Menmuir, B. Momo,
M. Moresco, S. Munaretto, L. Novello, R. Paccagnella, R. Pasqualotto, R.
Piovan, L. Piron, A. Pizzimenti, N. Pomphrey, P. Scarin, G. Serianni, E.
Spada, A. Soppelsa, S. Spagnolo, M. Spolaore, C. Taliercio, N. Vianello,
A. Zamengo, and P. Zanca, Plasma Phys. Controlled Fusion 51, 124031
!2009".

28C. Golé, J. Differ. Equ. 97, 140 !1992".
29R. S. MacKay and M. R. Muldoon, Phys. Lett. A 178, 245 !1993".
30D. H. J. Goodall, J. Nucl. Mater. 111–112, 11 !1982".
31S. J. Zweben, Phys. Fluids 28, 974 !1985".
32J. I. Boedo, D. Rudakov, R. Moyer, S. Krasheninnikov, D. Whyte, G.

McKee, G. Tynan, M. Schaffer, P. Stangeby, P. West, S. Allen, T. Evans,

R. Fonck, E. Hollmann, A. Leonard, A. Mahdavi, G. Porter, M. Tillack,
and G. Antar, Phys. Plasmas 8, 4826 !2001".

33J. L. Terry, R. Maqueda, C. S. Pitcher, S. J. Zweben, B. LaBombard, E. S.
Marmar, A. Y. Pigarov, and G. Wurden, J. Nucl. Mater. 290–293, 757
!2001".

34D. L. Rudakov, J. A. Boedo, R. A. Moyer, S. Krasheninnikov, A. W.
Leonard, M. A. Mahdavi, G. R. McKee, G. D. Porter, P. C. Stangeby, J. G.
Watkins, W. P. West, D. G. Whyte, and G. Antar, Plasma Phys. Controlled
Fusion 44, 717 !2002".

35A. Kirk, N. B. Ayed, G. Counsell, B. Dudson, T. Eich, A. Herrmann, B.
Koch, R. Martin, A. Meakins, S. Saarelma, R. Scannell, S. Tallents, M.
Walsh, H. R. Wilson, and MAST Team, Plasma Phys. Controlled Fusion
48 B433 !2006".

36D. Reiser, Phys. Plasmas 14, 082314 !2007".
37F. Wagner, G. Becker, K. Behringer, D. Campbell, A. Eberhagen, W.

Engelhardt, G. Fussmann, O. Gehre, J. Gernhardt, G. V. Gierke, G. Haas,
M. Huang, F. Karger, M. Keilhacker, O. Klüber, M. Kornherr, K. Lackner,
G. Lisitano, G. G. Lister, H. M. Mayer, D. Meisel, E. R. Müller, H.
Murmann, H. Niedermeyer, W. Poschenrieder, H. Rapp, H. Röhr, F.
Schneider, G. Siller, E. Speth, A. Stäbler, K. H. Steuer, G. Venus, O.
Vollmer, and Z. Yü, Phys. Rev. Lett. 49, 1408 !1982".

38L. J. Zheng and M. Tessarotto, private communication !1997".
39J. W. Connor, Plasma Phys. Controlled Fusion 40, 531 !1998".
40P. B. Snyder, H. R. Wilson, and X. Q. Xu, Phys. Plasmas 12, 056115

!2005".

052508-11 Current-interchange tearing modes… Phys. Plasmas 17, 052508 !2010"

Downloaded 12 Jul 2012 to 128.83.61.166. Redistribution subject to AIP license or copyright; see http://pop.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1063/1.1873792
http://dx.doi.org/10.1088/0029-5515/32/5/I10
http://dx.doi.org/10.4249/scholarpedia.3551
http://dx.doi.org/10.1088/0741-3335/51/12/124031
http://dx.doi.org/10.1016/0022-0396(92)90088-5
http://dx.doi.org/10.1016/0375-9601(93)91097-O
http://dx.doi.org/10.1016/0022-3115(82)90174-X
http://dx.doi.org/10.1063/1.865069
http://dx.doi.org/10.1063/1.1406940
http://dx.doi.org/10.1016/S0022-3115(00)00453-0
http://dx.doi.org/10.1088/0741-3335/44/6/308
http://dx.doi.org/10.1088/0741-3335/44/6/308
http://dx.doi.org/10.1088/0741-3335/48/12B/S41
http://dx.doi.org/10.1063/1.2771133
http://dx.doi.org/10.1103/PhysRevLett.49.1408
http://dx.doi.org/10.1088/0741-3335/40/5/002



